
Android Security
2015 Year In Review

April 2016

Contents

3

Overview

33

Ecosystem Data

43

Noteworthy PHAs
and Vulnerabilities

48

Appendix

7

Google Security
Services for Android

25

Android Platform
Security

3

Google is committed to ensuring that Android is a safe ecosystem for
users and developers. We do that by investing in multiple layers of protection
across a large and growing ecosystem. We provide security applications and
services for Android, constantly strengthen the core Android platform, and
foster an ecosystem rich with security innovation. We also regularly measure
the effectiveness of these efforts by collecting, analyzing, and sharing data
about the security of the Android ecosystem. We consider transparency to be
critical, so our second annual Android Security Year in Review is intended to
share the progress we’ve made with regards to security in the last year, as well
as provide our view of the state of security in the Android ecosystem.

Google security services for Android

To protect the Android ecosystem and its users, Google provides a complete
set of endpoint security services that is included automatically as part of
Google Mobile Services (GMS). These include both cloud-based services and
on-device services delivered as Android applications. In 2015, these services
protected over 1 billion devices, making Google one of the world’s largest
providers of on-device security services.

In 2015, we increased our understanding of the ecosystem using automated
systems that incorporate large-scale event correlation and machine learning
to run more than 400 million automatic security scans per day on devices with
Google Mobile Services. Thanks in part to these scans, successful exploitation
of vulnerabilities on Android devices continued to be extremely rare during
2015. The largest threat was installation of Potentially Harmful Applications
(PHAs), or applications that may harm a device, harm the device’s user, or
do something unintended with user data. On average, less than 0.5% of devices
had a PHA installed during 2015 and devices that only installed applications

Overview

Android Security 2015 Year in Review 3

http://www.android.com/gms/
https://source.android.com/security/reports/Google_Android_Security_PHA_classifications.pdf

Android Security 2015 Year in Review / Overview 4

from Google Play averaged less than 0.15%. Ongoing protection by Verify Apps,
which scans for PHAs, and SafetyNet, which protects from network threats—as
well as actions taken by the Android Security Team—helped stop the spread
of PHAs like Ghost Push and reduced Russian fraudware by over 80%. We also
released the SafetyNet Attest API to help developers check device compatibility
and integrity.

Android platform security

All Android devices share a common security model that provides every
application with a secure, isolated environment known as an application sand-
box. The Android security model has grown stronger over time, with further
application isolation enabled by SELinux, enhanced exploit mitigations, and
cryptographic features, such as full disk encryption and verified boot.

In 2015, Android continued to iterate and expand platform security technology
with the launch of Android 6.0. Most new devices with Android 6.0 have a
hardware root of trust and provide a verifiable good boot state. We introduced
support for device fingerprint sensors, improving user security through ease of
use. We changed the permission model so that users can see, grant, and revoke
permissions for applications at a granular level, allowing for better control of
the data and capabilities that each application can access. Encryption is now
mandatory for all devices capable of supporting it, and has been extended to
allow for encrypting data on SD cards. We continue to guide the Android
ecosystem to widely adopt the strongest available security technologies.

Ecosystem security programs

Android also has a number of efforts under way to promote security best
practices in the ecosystem. The Android Compatibility Definition Document
and Compatibility Test Suite provide a detailed series of security requirements
and tests to prove compatibility with these requirements. Google works with
device manufacturers to ensure that current devices are secure, and to define
a roadmap of constantly increasing security for devices (such as the require-
ment introduced in 2015 for most new Android devices to use encryption
and verified boot). Google Play encourages application developers to adopt
security best practices; we introduced policy changes that enhanced user
data protection in 2015, and also notified developers about potential security
issues, resulting in improvement of security for over 100,000 applications.

http://source.android.com/security/selinux/index.html
http://source.android.com/compatibility/android-cdd.pdf
http://source.android.com/compatibility/cts/index.html

Android Security 2015 Year in Review / Overview 5

We launched the Android Vulnerability Rewards program to encourage
independent security researchers to test Android’s security protections and
help us make the Android platform and ecosystem even safer.

We continued to provide device manufacturers with ongoing support for fixing
security vulnerabilities in devices, and have expanded the program to include
monthly public security bulletins with security patches released to the Android
Open Source Project (AOSP). In addition to the updates that we release for
Nexus devices, several device manufacturers and network providers are also
working toward monthly updates of their devices and services for users. As
part of this process, we introduced the Android security patch level, which
makes checking if an Android device is up-to-date with all security patches as
simple as knowing today’s date.

Openness strengthens security

Over time, we’ve come to recognize that the diversity of devices is a security
strength unique to the Android ecosystem. It is well known that highly uniform
ecosystems are at risk of ecosystem-wide compromise. The classic real-world
example of this phenomenon is crop blights, but the Internet-wide worms of the
late 1990s are more recent, digital examples. Because Android is open source,

Google

Users

Device
Makers

Application
Developers

Google security services
Google Play

Device with Android OS
Security OTAs

Applications
Application updates

AOSP
CTS/CDD

Security updates
Security best practices

Android SDK
Google services / APIs
Security best practices

Security improvement program

Google’s role in Android ecosystem security

https://www.google.com/about/appsecurity/android-rewards/
http://source.android.com/security/bulletin/index.html

Android Security 2015 Year in Review / Overview 6

it has allowed device manufacturers to customize devices and introduce
diversity. Android’s varied ecosystem (with over 60,000 different device models)
provides a naturally occurring defense against simple widespread exploitation,
and has made it more difficult for attackers to be successful against the
platform as a whole.

Android’s open source model has also allowed device manufacturers to
introduce new security capabilities. Samsung KNOX, for example, has taken
advantage of unique hardware capabilities to strengthen the root of trust
on Samsung devices. Samsung has also introduced new kernel monitoring
capabilities on their Android devices. Samsung is not unique in their contrib-
utions to the Android ecosystem. Blackberry has worked to enhance the
security of their devices by enabling kernel hardening and other features
in the Blackberry PRIV. CopperheadOS has both introduced security improve-
ments to their own version of Android and made significant contrib utions
to the Android Open Source Project. These are just some of the various contrib-
utions made possible through open sourcing that improved the Android
ecosystem in 2015.

To summarize, Android has multiple layers of security technology in place
to protect our users. In 2015, we improved our security technology, our
understanding of the threats that the ecosystem faces, and our ability to
respond to those threats. Android continues to advance the state of security,
while protecting our users.

https://copperhead.co/android/

7Android Security 2015 Year in Review

As stated earlier, Google provides security services to protect the Android
ecosystem that includes both cloud-based services and on-device services
delivered as Android applications. All devices with Google Mobile Services have
the complete set of endpoint services that protect against a wide range of
common threats including network attacks, application exploits, Potentially
Harmful Applications, and physical attacks such as device theft.

Through aggregated, anonymized security data sent from user devices,
we gather information and monitor the general state of the Android ecosystem.
These services scan for Potentially Harmful Applications at install time,
perform regular scans of installed applications, and provide user protection.
The services also automatically send anonymized data back to Google,
which we use to monitor the overall cleanliness of the Android ecosystem.

As of the end of 2015, there were over 1 billion devices protected by
Google’s security services, and over 400 million device security scans were
conducted per day. We believe this makes our security services the most
widely deployed and used endpoint protection in the world.

Google Security
Services for Android

We believe this makes our security services
the most widely deployed and used endpoint
protections in the world.

Google security services for Android, 2015

Android Security 2015 Year in Review / Google Security Services for Android 8

Google
Play

App X App Y

App Z

Chrome

Android

App Sandbox
 Verified Boot

Encryption
Etc.

Apps

Knowledge
PHA or not

Best practices

Knowledge
Risk signal

Data
Rare Apps

Protections
Warnings

Configuration Changes
Etc.

Device Data
Events

Measurements
Configuration

Etc.

Smart Lock

Device Manager

Safe Browsing

SafetyNet

Verify Apps

Google Mobile Services

App Install Checks

Apps

Knowledge
PHA or not

Application
Analysis

Static
 Dynamic

Reputation
 Etc.

SafetyNet
Analysis

Exploit Detection
ACE
SIC
Etc.

Install Apps

Attest API

Data
App features
Install source

Knowledge
PHA or not

On Device On Cloud

Android Security 2015 Year in Review / Google Security Services for Android 9

On-device protections

One of our design goals is to provide the right protection at exactly the
moment when it is needed most by the user. Google’s use of both on-device
and cloud-based services provides Android devices using GMS with flexibility
to improve security in ways that are not possible within a traditional client
operating system. The endpoint protections Google provides include preventing
installation of Potentially Harmful Applications, enabling users to protect
a lost or stolen device, protecting users against potentially harmful websites,
simplifying the user-authentication process, and even helping third-party
applications check the security of a device.

Google on-device protections, 2015

This section provides a description of these services and details the
improvements to these services in 2015.

Verify Apps
Introduced in 2012, Verify Apps uses a cloud-based service to check every
application prior to install to determine if the application is potentially harmful.
In 2014, these checks were extended to scan applications already on the device
to ensure none of them were harmful. Verify Apps will prompt the user to
remove a PHA if one is found. Verify Apps can also remove an application
without requiring the user to confirm the removal. We may use this functionality
in rare cases to remove PHAs we determine are purely harmful and have no
possible benefit to users.

Service Protection

Verify Apps Protection from Potentially Harmful Applications

SafetyNet Protection from network and application-based threats

Safebrowsing Protection from unsafe websites

Developer API Provide applications with a way to use Google’s security services

Android Device Manager Protection for lost and stolen devices

Smart Lock Improve user authentication and physical protection

Android Security 2015 Year in Review / Google Security Services for Android 10

In 2015, we improved the ability of Verify Apps so that it can remove applic-
ations that register as Device Administrators. We also added the ability for
Verify Apps to disable applications that have been installed onto the system
partition following a compromise of the device security model.

Not all security improvements are technical in nature. Some of them come
from understanding user behavior and making the easiest choice also the
safest. In late 2015, we made several changes to the Verify Apps warning dialog
to make it easy for users to proceed with the safe option of not installing a
PHA. We added a red icon with an exclamation mark to signal to the user that
this dialog needs their full attention. We also moved the option to proceed
with installation under a cut to prevent cases where a user clicks OK without
fully reading what the dialog says.

Changing the user experience resulted in 50%
fewer users installing PHAs.

Comparison of Verify Apps Dialog Improvements

Previous Verify Apps
warning dialog

New Verify Apps warning
dialog, with the option to
proceed with install hidden

New Verify Apps warning
dialog, showing the option
to move forward with install

Android Security 2015 Year in Review / Google Security Services for Android 11

Verify Apps—Rare app collection
Verify Apps protects users against applications that are installed from any
source—whether they come from Google Play or outside of Play—so it is
important that our systems have visibility into as many applications as possible.
All applications that are submitted to Google Play undergo a review. Similarly,
all applications that Google’s cloud-based systems are able to locate on public
websites are reviewed.

Starting in 2015, users can send applications from their device to Google for
review. This increases the effectiveness of the protection provided by Verify
Apps for all users.

SafetyNet
SafetyNet allows devices to contribute security-related information to
Google’s cloud-based services. This information can include information
about security events, logs, configuration information, and other security-
relevant information. SafetyNet was introduced in 2013.

SafetyNet—Exploit detection
Many vulnerabilities have tell-tale characteristics associated with exploitation,
such as passing a too-long string into a buffer, or receiving two different
responses from a DNS server when requesting a single lookup.

Google began to use this knowledge to improve Android device security in
2013 when we added logging as part of vulnerability patches to detect
exploitation. When a vulnerability is fixed, code is inserted into the platform
(or application) which generates a log when a potential exploit attempt is
detected. This log contains information required to track exploitation trends
and better understand the effectiveness of our security improvements.

In 2015, we added exploit detection for multiple new vulnerabilities, including
several related to Stagefright.

SafetyNet—Network probes
Certificate pinning and blacklisting were introduced in Android 4.2 to provide
a mechanism to respond to potential compromises in the Certificate Authorities
installed by default on Android devices. On devices with Android 4.4 and later,
Android displays a warning if a certificate was installed locally on the device
that could allow interception of SSL traffic. Starting in October 2014, SafetyNet
used active network probes to identify cases where the system certificate store
has been manipulated.

Android Security 2015 Year in Review / Google Security Services for Android 12

Throughout 2015, SafetyNet found that fewer than 2 out of every million
devices had installed a local certificate to man-in-the-middle network
connections to Google services. In most cases, those certificates were installed
by the user, although we have seen a small number of instances where devices
were compromised and had a certificate installed directly into the system
certifi cate store, which avoids the security warning to users on newer devices.
All instances appear to be part of legitimate enterprise security efforts. At this
time, we have not detected any manipulation of the system certificate store
efforts that we would classify as “malicious.”

Android Device Manager
In 2013, Google introduced the Android Device Manager service to help users
locate their lost Android device. Users are also able to remotely set up a lock
screen or erase the device entirely to protect their personal data and accounts.
This is available to any Android user who signs into their Google account on
their phone. No additional downloads are required, and the service is enabled
by default on devices running Android 4.4 and above.

17.8 million people used Android Device Manager to locate their device in 2015,
representing a 43% increase in usage over 2014. Of these, 22% were using
Android Device Manager for the first time. Most users find their device with the
locate and ring functionality. Lock and Wipe are significantly less common.
This may indicate that in general, devices are simply lost and users are able to
recover them.

The graph below shows the trends from 2014 to 2015. In 2014, we saw a steady
growth in usage that leveled off through 2015 at over 150,000 daily users.

2014–2015: Android Device Manager trends

150,000

0

300,000

July 2014 Oct 2014April 2014 Jan 2015 July 2015 Oct 2015April 2015

Users

Android Security 2015 Year in Review / Google Security Services for Android 13

Smart Lock
Using a lockscreen greatly increases user privacy and security. Our research
has found that many users of mobile devices choose not to use a lockscreen
because manually unlocking their device dozens or even hundreds of times
a day is too burdensome. In 2014, Android 5.0 introduced Smart Lock, which
allows a user’s device to remain unlocked as long as it remains in their
possession, as determined by certain security signals. This reduces the
number of times that a user needs to manually unlock their device and
encourages adoption of a more secure lockscreen. Initially, Smart Lock
supported trusted faces and trusted Bluetooth devices. In 2015, we extended
Smart Lock to include on-body detection and trusted places. As the graph
below shows, on average, users of Smart Lock need to unlock their device
about half as often as before they enabled the feature. And users that have
configured Smart Lock to use multiple unlock mechanisms have even better
results—use of trusted Bluetooth devices, trusted places, and on-body
detection reduces the number of manual unlocks by about 90%.

Smart Lock Usage

0.00%

25.00%

50.00%

75.00%

Face

Blueto
oth

On-body

dete
tci

on
Truste

d

loca
tio

n

Blueto
oth &

Truste
d lo

ca
tio

n

Blueto
oth &

On-body d
ete

cti
on

Truste
d lo

ca
tio

n &

On-body d
ete

cti
on

Smart L
ock

ove
rall

100.00%

Blueto
oth, T

ruste
d lo

ca
tio

n,

& On-body d
ete

cti
on

%
 A

ut
om

at
ed

 B
yp

as
s

of
 U

nl
oc

k
fo

r A
ve

ra
ge

 U
se

r

Android Security 2015 Year in Review / Google Security Services for Android 14

Cloud-based security analysis

In a diverse ecosystem with over 1 billion devices, one of the key benefits of
Google’s security services is that they can gather and analyze data. This allows
us to provide protections that are optimized for the current environment, and
in some cases even for a single device. At the end of 2015, Google provided
over 400 million device security scans each day, contributing billions of pieces
of new data to our analysis engine every day. This section describes some
of the new analysis capabilities introduced to Google’s security services for
Android in 2015 to enhance our understanding of potential threats so that
we can better protect users.

Application security analysis
Before applications become available in Google Play, they undergo an appli-
cation review process to confirm that they comply with Google Play policies.
We conduct similar analysis for Android applications that Google has found
outside of Google Play by crawling the web for these applications, as well
as drawing from other sources such as the VirusTotal database and the
Rare App Collection feature in Verify Apps.

The Application Security Analysis systems at Google were built through a
collaboration between the Google Safebrowsing Team and the Android Security
team, leveraging the extensive experience Google Safebrowsing has developed
in testing the security of websites. Google’s systems use a variety of algorithms,
including expert systems and machine learning, to see patterns and make
connections that humans would not. The signals and results are continuously
monitored and refined to reduce error rate and improve precision.

At the end of 2015, these systems were conducting ongoing automated
analysis on over 35 million Android Application Packages (APKs). This includes
every version of every application that has been published in Google Play
and millions of APKs that were never published in Google Play. Each APK is
analyzed multiple times. This analysis requires tens of thousands of CPU cores,
many terabytes of RAM, and many petabytes of storage. Because this analysis
has been ongoing for several years, our visibility into the application ecosystem
is larger than the current install base of applications. Many APKs that we have
found outside of Google Play have very few installations, and applications from
Google Play are updated automatically, so older versions are replaced by newer
versions. At the end of 2015, about 75% of the APKs within our system were
not in active circulation (they have 0 known installations) and another 10%
currently had fewer than five installations.

https://www.virustotal.com/
https://en.wikipedia.org/wiki/Android_application_package

Android Security 2015 Year in Review / Google Security Services for Android 15

Here are some of the ways that our machines learn what is good and what is bad:

Static analysis
We analyze application code
without running the app.
Application features are
extracted and analyzed against
expected good behavior
and potential bad behavior.

Dynamic analysis
We run applications to identify
interactive behavior that
cannot be seen with static
analysis. This allows reviewers
to identify attacks that require
connection to a server and
dynamic downloading of code.

Heuristic and
similarity analysis
We compare applications with
each other to find trends that
lead to harmful apps.

Signatures
We use signatures to
compare apps against
a database of known bad
apps and vulnerabilities.

Developer relationships
We analyze non-code features
to determine possible
relationships between
applications and to evaluate
whether the developer that
created the application may
have previously been associated
with creation of Potentially
Harmful Applications.

Third-party reports
We cultivate active relationships
with industry and academic
security researchers.
These independent security
researchers also evaluate
applications in a variety of ways
and will often let us know if they
see something amiss.

SafetyNet
A privacy preserving sensor
network spanning the Android
ecosystem, identifying apps
and other threats that cause
harm to the device.

Android Security 2015 Year in Review / Google Security Services for Android 16

In the following sections, we provide more details about specific improvements
to the way that we analyze applications, in addition to the ways that this
analysis is used to protect the Android ecosystem.

Static analysis
Drawing from the experience developed by the SafeBrowsing team for detecting
web-based abuse, one of the first technologies Google used to test Android
applications was static analysis of the application code. Static analysis allows
us to extract specific application behaviors and then express them in a manner
that can be compared against our policies. For example, we can determine ifan
application contains code that would allow it to send an SMS to a specific number.

In 2014, we replaced substantial parts our static analysis framework, allowing
us to create rules that linked functionality that spanned multiple subcomponents
in an application. In 2015, we expanded the set of rules used in static analysis.

The Application Security Improvement Program provides an example of
a result that wasn’t possible before the improvements made in 2015: some
applications override the default SSL error handling in a way that would allow
web connections to a server with an invalid certificate. This is done to simplify
testing during development, but if the code remains in a production application,
it is susceptible to man-in-the-middle attacks. We are now able to identify
applications with this potential security problem, and we have helped thousands
of application developers catch this issue in their application.

Dynamic analysis
Drawing from the experience developed by the SafeBrowsing team for detec -
ting web-based abuse, Google also uses dynamic analysis to test Android
applications in an emulated environment where we run the application and
provide inputs. This allows us to monitor its behavior to detect potentially
harmful behavior that may not have been apparent in static analysis.

One of the challenges of dynamic analysis is that malicious applications may
attempt to detect that they are running in an analysis framework and evade
detection. We use the diversity of Android ecosystem as a natural camouflage:
our systems are designed to simulate a large number of different devices in
different situations and monitor applications to see how they respond. If they
respond differently that may be an indication the application is trying to evade
detection. In 2015, we made a large number of changes that are designed to
prevent detection of the analysis framework.

Dynamic analysis allows us to see how an application reacts to external
variables, such as external network servers. Many applications download

Android Security 2015 Year in Review / Google Security Services for Android 17

functionality from servers, receive data that determines how they will behave,
or both. In 2015, we introduced a more sophisticated process for deciding
when an application can have access to the network, and how they would
access the network. These techniques allow us to increase the coverage
of our dynamic analysis while minimizing the information we reveal
to malicious application developers who may want to evade our analysis.

Another challenge in dynamic analysis is exercising all of the functionality
of the application. For example, if an application starts by asking for an account
login, then the automated system that lacks account credentials may not be
able to run very much of the application functionality. In 2015, we began to use
our static analysis to identify events and/or conditions that will provide for
increased code coverage in our dynamic analysis.

There are also two entirely new areas that we introduced to our dynamic
analysis in 2015:

Human-powered dynamic analysis
Many Google products interact with Android applications and have policies
enforced using a review process. Google Play, for example, reviews all
application and content updates for compliance with the Google Play
Developer Content Policy, and Google AdWords reviews apps promoted
through mobile app install campaigns.

Within these review processes, automated systems are not always sufficient
to conduct a complete review, so we have many analysts across Google
that conduct manual reviews of Android applications. In 2015, we enhanced our
automated systems so that these manual reviews could provide data directly
into our automated system. Letting humans interact with the application
increases coverage for our dynamic analysis, and provides another oppor tunity
for our automated systems to detect potentially harmful behavior.

Honeypots
A honeypot is a set of data that appears to be legitimate but is actually
fake data that is isolated and monitored. It appears to contain information
or a resource of value to attackers that would not be of interest in a legitimate
use case. In 2015, Android began to use honeypots to enhance our dynamic
analysis of applications. Specifically, we create fake account data and then
monitor that account for spam and other abusive interactions. These honeypots
are generated in a manner that allows us to associate the abusive interaction
with a set of applications, so that we can identify PHAs even if the abuse takes
place long after our initial evaluation of the application.

https://play.google.com/about/developer-content-policy.html
https://support.google.com/adwords/answer/6309936

Android Security 2015 Year in Review / Google Security Services for Android 18

Developer relationships
Before a developer is allowed to submit an application to Google Play,
they need to create an account with Google and make a small commercial
transaction. Google uses this information to perform a risk assessment
of the developer before they have even uploaded an application to Google Play.
Over time, our systems gain more information about the developer account
and are able to make more accurate risk assessments.

Our systems have discovered that once a developer makes a single PHA,
they are much more likely to produce PHAs in the future. Because of this key
finding, our systems can take action against all applications associated with
an individual developer. In some instances, the same individual developer may
also create multiple accounts, so our system is designed to identify accounts
that are created or used by the same developer.

In 2015, we updated our system for analyzing individual developers and also
for analyzing the relationship between developers. These improved systems
allow us to find clusters of accounts that are controlled by the same developer,
and more quickly respond to applications created by the developer (both
inside and outside of Google Play).

Heuristics and similarity
Starting in 2012, our systems use algorithms to detect similarity between
applications.

To perform this analysis, every application is decomposed into thousands
of constituent pieces and each piece is classified as a feature. Some features,
like a proprietary logo for a popular application, are expected to be unique—so
if we find a second application using that logo, that may be an indication of
an attempt to impersonate the popular application to increase installs or trick a
user. In 2015, the Safebrowsing team worked to improve our ability to detect
visual similarity between assets (such as logos) that can be used to mislead or
trick users to install deceptive applications or phishing applications.

In other cases, analysis of feature similarity can identify associations that
are not apparent to a casual observer and allow us to to determine that two
applications are related, or might have been created by the same entity.
For example, two applications may include an image that is shared only by
those two applications and that we have seen in no other applications (or
anywhere else, for that matter), which suggests that the two applications had
the same author. In 2015, we greatly expanded the number and types of
features that we can extract from applications, improving our ability to identify
these relationships between applications. To manage the increasing number

Android Security 2015 Year in Review / Google Security Services for Android 19

of features that are available, we also expanded our use of machine learning
and other data analysis techniques to detect non-obvious relationships between
applications.

In 2015, we also integrated VxClass, a technology that can create clusters
based on similarity in the code structure. This allows us to more quickly identify
applications that originate from related source code.

Signatures
Signatures allow our application analysis to detect applications that are
the same as a previously identified PHA. The simplest signature that we use
is a match of the entire application to a previously known PHA. As mentioned
in the section on Rare App Collection, during 2015, over 90% of the time a
user attempted to install an application from outside of Google Play, that app
had already undergone a complete automated analysis, so this rudimentary
signature analysis continues to be quite effective.

In 2014, we deployed a more flexible signature format that can be used to
identify applications on the client without sending them to Google for complete
analysis. Rather than checking the entire application, this approach extracts
multiple features from the application and then checks for similarities to known
PHAs based on features. This allows Verify Apps to quickly identify applications
that have not been previously seen and warn users even if that application has
not undergone a comprehensive automated analysis.

In 2015, we continued to expand our set of signatures and enhance our
signature format to provide greater client-side detection rates.

SafetyNet integration
SafetyNet provides information about the security of devices in the real
world. Starting in 2014, we began to use this data to identify potentially harmful
behavior that might not occur within our emulated environment. For example,
how a user responds to a security warning can be an indication of whether an
application is potentially trying to trick a user. In 2014, we began use SafetyNet
results to identify applications that tried to abuse SMS, based on users’
responses to warnings about premium SMS. (See SMS Fraud for more details.)

In 2015, we began to integrate data from the Anomaly Correlation Engine to
detect rooting applications and other PHAs.

Anomaly Correlation Engine
SafetyNet gathers anonymized data from over 1 billion Android devices to build
a picture of the Android ecosystem. In late 2015, we created the Anomaly

Android Security 2015 Year in Review / Google Security Services for Android 20

Correlation Engine (ACE) to extend SafetyNet’s ability to detect and identify
PHAs. ACE monitors for changes in key device security indicators, then
examines which applications have changed since the device was in a known
secure state. By gathering this information across a large number of devices,
we can determine which application is likely to have caused the security
posture change and investigate. This allows us to quickly identify new PHAs
and take steps to protect users by blocking and removing them from the
Android ecosystem before they can spread widely.

System Integrity Check
SafetyNet checks for system integrity when a device is in idle mode, is
charging or above a certain charge level, and is connected to an unmetered
network. The on-device client hashes the system partition and checks it against
a cloud-based service with a collection of known system partitions, called
System Integrity Check (SIC). Most devices have well-known system partitions,
so in most cases only one query is made, keeping the number of network
queries and associated charges low.

If the query results in an unknown system partition, then the SafetyNet client
will recursively search to find the source of the hash mismatch. This approach
minimizes the number of queries and network traffic, while providing a precise
understanding of the state of the device system partition.

Much like the Anomaly Correlation Engine, the System Integrity Check is used
to detect potential anomalies and improve the quality of the SafetyNet Attest
API. It also provides a way to measure the diversity of the Android ecosystem:
SIC has identified over 175,000 unique system partitions (and over 60,000
system partitions that have more than 1,000 active devices).

At-risk device identification
We use data gathered by SafetyNet to identify populations of devices that have
a higher risk of a potential security event. For example, our 2014 annual report
showed that devices that had the Russian locale and installed applications
from outside of Google Play were over 5 times more likely to install a PHA than
the worldwide average: in early 2015, we identified this device population as
“at risk.”

Once we identify a group of at-risk devices, we can make changes to the default
configuration of our services to enable stronger protection for those users.
These changes may have side effects on users (such as increased bandwidth
consumption or requiring the user to navigate an additional UI element), so
when strengthening security, we must carefully balance the potential benefit
to users.

#heading=h.mqc67q46g5c2
#heading=h.mqc67q46g5c2

Android Security 2015 Year in Review / Google Security Services for Android 21

Some example changes that we applied to at-risk devices include:

 — Increasing the frequency of device-wide security scans. This allows changes
in policies to be adopted more quickly across the target. For example,
devices that are at greatest risk are scanned once per day, compared to
a global average of approximately once per week.

 — More aggressive blocking of Potentially Harmful Applications. By default,
Verify Apps simply warns users about PHAs, but it can also block installation
of applications. We may use automated blocking of certain types of targeted
harmful applications that continue to be installed despite users being warned
that the application is harmful.

Stronger security for at-risk devices allowed us to reduce the occurrence of
Potentially Harmful Applications in Russia by over 80% in 2015. (See the section
Russian Banking Fraud for more details.)

C&C monitoring
Some Potentially Harmful Applications (for example, botnets) are designed
to receive commands from a server, guiding their actions. In 2012, we began
to deploy systems to monitor the command and control servers (C&C) of
known backdoors and automated systems. In 2015, we added several new
C&C protocols and server instances to our C&C monitoring systems.

Our C&C monitoring systems simulate the behavior of a client application,
connect to the C&C, and check to see if any commands have been initiated.
This allows us to detect and quickly react to changes in behavior. For example,
we might detect that a C&C is telling the members of a botnet to install a
specific PHA. Our C&C monitoring systems, in collaboration with Verify Apps
on users’ devices, would allow us to both block the installation of that PHA
and identify any existing, but previously unidentified, members of the botnet
based on their attempt to install the PHA.

App Security Improvement Program
The App Security Improvement Program identifies apps in Google Play that
have known security vulnerabilities (through incorrect coding practices or
by using known vulnerable libraries), notifies the developers of their app’s
vulnerabilities, and encourages them to fix the vulnerabilities. Apps uploaded
to Google Play are scanned for specific known vulnerabilities. As apps are
identified, developers are alerted via email and the Play Developer Console to
let them know their app contains one of these known vulnerabilities. We then
provide the developer with guidance to fix the vulnerabilities.

Android Security 2015 Year in Review / Google Security Services for Android 22

In 2015, we launched campaigns to remediate five known types of vulner-
abilities. These campaigns cover known vulnerabilities in the following
libraries: Vungle, Apache Cordova, WebView SSL, GnuTLS, and Vitamio.
The program has resulted in the remediation of vulnerabilities in over 100,000
apps in Google Play.

To encourage security fixes within an industry-standard timeline, we began
imposing remediation deadlines in 2015. After 90 days from the first
announcement, app updates and new apps containing the vulnerability are
not accepted in Google Play. Any app that was already in Play and exceeds
the 90-day remediation period without a fix continues to be available on Google
Play. However, if the developer wants to upload a new version after the reme-
diation period, the new version must include fixes for the vulnerabilities
we alerted them about.

Potentially Harmful Application identification
We use the term Potentially Harmful Application (PHA) to describe any
application that we determine may harm a device, harm the device’s user,
or do something unintended with user data through the device. This definition
includes intentionally malicious apps like phishing apps or ransomware,
but it also includes non-malicious apps. For example, a game that transmits
a list of a device’s installed apps without express user consent is classified
as a PHA. All PHAs are prohibited on Google Play by policy and Verify Apps
will warn users about PHAs if they are installed from outside of Google
Play. We conduct the same analysis for applications that Google has found
outside of Google Play to deliver the Verify Apps feature. For users who have
enabled protection for applications that are downloaded from outside Google
Play, Verify Apps warns them based on the application’s classification.

We modified the PHA warnings slightly in the past year to make the them
 clearer and easier for users to understand. The current list of warnings
presented to users is:

The Security Improvement program has resulted
in remediation of vulnerabilities in over 100,000
apps in Google Play.

Android Security 2015 Year in Review / Google Security Services for Android 23

Classification Description to users

Backdoor
This app lets hackers control your device, giving them unauthorized access to
your data.

Call fraud
This app can add charges to your mobile bill by making costly calls without
informing you first.

DDOS
This app can be used to perform denial of service attacks against other systems
and resources.

Generic PHA
This app can damage your device, add hidden charges to your mobile bill,
or steal your personal information.

Harmful site This app comes from a website that distributes Potentially Harmful Apps.

Non-Android This app can harm non-Android devices.

Phishing This app is fake. It can steal your personal data, such as passwords.

Privilege escalation This app can permanently damage your device or cost you money.

Ransomware This app can restrict access to your device until a sum of money is paid.

Rooting malware This app contains code that attempts to bypass Android’s security protections.

Rooting (non-malware) This app contains code that attempts to bypass Android’s security protections.

SMS Fraud
This app can add charges to your mobile bill by sending costly SMS messages
without informing you first.

Spam
This app can be used to flood targeted tablets, PCs, and mobile phones with
messages.

Spyware This app can spy on you by sending your personal data to unauthorized parties.

Trojan This app is fake. It can damage your device and steal your data.

Windows This app can harm a device running Windows.

WAP Fraud This app can add charges to your mobile bill without asking you first.

Potentially Harmful Application (PHA) classifications

Android Security 2015 Year in Review / Google Security Services for Android 24

In 2015, we added two new types of warnings, Privilege Escalation and Spam,
bringing the total number of warning categories to 17. For more information,
see our report on classifying Potentially Harmful Applications.

The vast majority of applications are not classified as potentially harmful, so in
general, users of Verify Apps will see nothing displayed at the time of install. If
an application is classified as potentially harmful, then in addition to displaying
the warning, Verify Apps allows the user to decide whether to proceed with the
installation. In very rare cases, such as for the Russian Banking Fraud discussed
later, we may judge that the app is extremely harmful, and will block the
installation.

https://source.android.com/security/reports/Google_Android_Security_PHA_classifications.pdf

Android Platform
Security

Since Android was launched over seven years ago, all Android devices have
shared a common security model that provides every application with a secure,
isolated environment known as an application sandbox. Android was one of
the first operating systems to introduce the idea of sandboxing to both protect
applications from attacks and protect the device from applications. Sandboxing
is used for all applications on the device, including system-level applications.
The Android security model has grown stronger over time, with further appli-
cation isolation enabled by SELinux, enhanced exploit mitigations, and
cryptographic features such as full disk encryption and verified boot. Many
Android devices also take advantage of unique hardware security features
such as integration of key storage and cryptographic routines into TrustZone,
and the creation of a hardware root of trust.

The Android security model

Android Security 2015 Year in Review 25

System System System System System System System

Root Root Root Root Root

Kernel

Trust
Zone

Contacts

User 1 Email

Game X Game Y

Google Play

Contacts

User 2 Email

Game X Game Y

Google Play

Hardware

http://source.android.com/security/selinux/index.html

This section covers 2015 updates to the Android platform and its features,
as well as how we rate the severity of platform vulnerabilities and the programs
we have in place to reward researchers who find platform-level vulnerabilities.

Updates and features

In 2015, there was one major new release for Android: version 6.0, named
Marshmallow. This section summarizes major security features included in
the Android platform and highlights where they were updated in Android 6.0.
For a list of more features, see Security Enhancements in Android 6.0.

Application sandbox
The application sandbox is the fundamental technology for the Android security
model. Starting with the earliest versions of Android, the Android platform used
Linux user-based protection as a means of identifying and isolating application
resources. Each Android application is assigned a user ID (UID) and is run as
that user in a separate process. This approach is different from other operating
systems (including the traditional Linux configuration), where multiple appli-
cations run with the same user permissions. SELinux was first used in Android
4.4 in conjunction with the Linux UID to define the application sandbox.

The combination of UID boundaries and SElinux creates a kernel-level
application sandbox. The kernel enforces security between applications
and the system at the process level through standard Linux facilities,
such as user and group IDs that are assigned to applications. By default,
applications cannot interact with each other and applications have
limited access to the operating system.

Because the application sandbox is in the kernel, this security model
extends to native code and to operating system-level applications. All of the
software above the kernel including operating system libraries, application
framework, application runtime, and all applications run within their
own application sandbox.

With Android 6.0, these boundaries were further enhanced with a few impor tant
changes. Android’s SELinux implementation now supports ioctl filtering, which
restricts the set of ioctls available to applications, reducing the size of the
potential kernel attack surface. We also enhanced multi-user separation by
utilizing Multi-Level Security (MLS) to further enforce file access limits. This
provides operating system enforced guarantees that data isn’t accessible
across user boundaries, or between user and enterprise data.

Android Security 2015 Year in Review / Android Platform Security 26

http://source.android.com/security/enhancements/enhancements60.html

Permissions
Because of the application sandbox, an Android application can only access
a limited range of system resources. These restrictions are implemented in
a variety of different forms. Some capabilities are restricted by an intentional
lack of APIs to the sensitive functionality (e.g. there is no Android API for
directly manipulating the SIM card). In some instances, separation of roles
provides a security measure, as with the per-application isolation of storage. In
other instances, the sensitive APIs are intended for use by trusted applications
and protected through a security mechanism known as Permissions.

Prior to Android 6.0, users had to accept all permission requests from an
appli cation at the time they installed it. This all-or-nothing approach required
users to make a trade off between accepting all requested permissions or not
installing the application. Android 6.0’s granular permissions structure gives
users more fine-grained control of what resources installed applications are
allowed to access. With granular permissions, users are able to only grant
permissions that they want to the app. In addition, permissions are granted
at application run time, which allows the user to grant permissions as they
are needed.

Verified Boot
Verified Boot, introduced in Android 4.4, provides a hardware-based root of
trust, and confirms the state of each stage of the boot process. During boot,
Android warns the user if the operating system has been modified from the
factory version, provides information about what the warning means, and
offers solutions to correct it. Depending on device implementation, Verified
Boot will either allow the boot to proceed, stop the device from booting so
the user can take action on the issue, or prevent the device from booting up
until the issue is resolved. Starting from Android 6.0, device implementations
with Advanced Encryption Standard (AES) crypto performance above 50MiB/
seconds support Verified Boot for device integrity.

Details on Android Verified Boot implementation and features can be found
in the Verified Boot section on source.android.com.

Full disk encryption
Encryption was introduced to Android in version 3.0, and has continuously
evolved since that time. Starting with Android 5.0, it was strongly recommended
that manufacturers enable encryption for all devices. With Android 6.0, devices
that use a lockscreen and have Advanced Encryption Standard (AES) crypto
performance above 50MiB/second are required to always encrypt private app
data and shared data storage partitions, by default. This requirement has been
added to the Android Compatibility Definition Document.

Android Security 2015 Year in Review / Android Platform Security 27

https://source.android.com/security/verifiedboot/index.html
http://source.android.com/compatibility/android-cdd.pdf

Android Security 2015 Year in Review / Android Platform Security 28

In addition to requiring that the device main storage be encrypted at all
times, Android 6.0 also allows removable storage media, such as SD
cards, to be encrypted as well. Data on SD cards can’t be read if the card
is removed from the device, providing protection for extensible storage
as well as internal storage.

User authentication
Using a lockscreen greatly increases user privacy and security. All versions
of Android provide a variety of lockscreen methods to authenticate the
user prior to allowing access to the device, including PIN, Password, and
Pattern. Starting with Android 5.0 in 2014, Android introduced TrustAgents,
which allows for more flexible lockscreen mechanisms provided by an
application on the device (Google’s Smart Lock was built

Android Security Patch Level

on this technology).

Starting with version 6.0, Android supports fingerprint
scanners. This allows applications to use biometrics
for authentication, reducing the number of times a user
needs to enter their password or unlock pattern, thus
decreasing friction around lockscreen use. Lockscreen
use is higher on devices with a fingerprint scanner. For
example, 55.8% of Nexus 5 and 6 devices (which have
no fingerprint scanner) have a lockscreen, compared to
91.5% on fingerprint-enabled Nexus 5X and 6P devices.
We are seeing an increase in lockscreen usage for other
Android devices that provide fingerprint scanner support.

Android security patch level
The Android security patch level is a user-visible date
that allows consumers and enterprise customers to
verify they are using a version of Android that contains
the most recent security updates. Our monthly public
security bulletins document newly patched security
vulnerabilities and the security patch level that contains
all of these fixes. By checking the security patch level,
users can verify their device has the fixes for the issues
described in our bulletins.

Businesses can use the security patch level in their
enterprise mobile management platform to require
up-to-date security to access corporate resources.
This will become a key new tool and best practice for
enterprises to protect their infrastructure.

https://support.google.com/nexus/answer/4457705
http://source.android.com/security/bulletin/index.html
http://source.android.com/security/bulletin/index.html

The Android Security Patch Level is available for devices running Android 4.4
and above. The patch level is required for all Android 6.0 and above devices,
and this is tested with the Android Compatibility Test Suite (CTS). Google
is also requiring that all Android 5.0 and above devices with Google Mobile
Services provide a patch string.

KeyStore and lockscreen
With Android 6.0, Lockscreen verification now occurs in the Trusted Execution
Environment (TEE) for devices that support a TEE (such as the majority of new
devices that launched with Android 6.0). This provides brute force protection
with exponentially increasing delays on verification of the user’s lock screen
challenge.

The KeyStore in Android 6.0 includes the ability to tie successful unlocks using
a PIN, pattern, password, or fingerprint to KeyStore keys such that certain
keys are only available within a certain time window of the unlock. In addition,
KeyStore now supports TEE-based AES and HMAC keys. These improvements,
along with a host of other smaller enhancements, provide app developers more
options to secure their data and communications.

Vulnerabilities and programs

A platform vulnerability represents the possibility of a bad actor bypassing
built-in security features in order to steal information, or cause harm to a
device. It’s important to note that a vulnerability only represents the potential
for security control bypass. In order to use a vulnerability, an attacker must be
able to construct an exploit that takes advantage of the vulnerability. Actual
exploitation of a vulnerability may be complicated or prevented by other security
controls. As we assesses a vulnerability to assign a severity, we take its potential
exploitability into account. For example, a vulnerability that would normally
be rated as Critical could have the severity reduced to Low if there is no way
to reach the vulnerable code. We err on the side of caution, so we consider a
vulnerability exploitable unless we can prove that it can’t be exploited.

Vulnerability severity rating system
The Android Security Team uses a 4-tier system to rate the severity of
vulnerabilities. The system used in 2015 is similar to what was presented in
last year’s Android Security Year In Review report, but we have made some
changes. The most important change to the rating system is that we readjusted
the Critical rating to remove the requirement that there be active exploitation
detected in the wild. The effect of this was to shift a number of vulnerabilities
that once would have been rated as High into the Critical category.

Android Security 2015 Year in Review / Android Platform Security 29

http://source.android.com/compatibility/cts/index.html
http://www.android.com/gms/
http://www.android.com/gms/
http://source.android.com/security/reports/Google_Android_Security_2014_Report_Final.pdf

The rating system used in 2015 is as follows:

2015 severity rating system

Rating Consequence of successful exploitation

Critical

 — Remote privileged code execution (execution at a privilege
level that third-party apps cannot obtain)

 — Local permanent device compromise (device cannot be
repaired without re-flashing the entire operating system,
such as a verified boot or Trusted Execution Environment/TEE
compromise)

 — Remote permanent denial of service (inoperability, either
completely permanent or requiring re-flashing the device)

High

 — Remote unprivileged code execution (execution at a privilege
level that third-party apps can obtain through installation)

 — Local access to system/signature-level permission data or
capabilities without permission

 — Local permanent denial-of-service (inoperability, either completely
permanent or requiring re-flashing the device)

 — Remote temporary denial-of-service (remote hang or reboot)

Moderate

 — Access to “dangerous” level permission data or capabilities
without permission with an app installed on the device

 — Local temporary denial-of-service (can be resolved only through
a factory reset)

Low

 — Access to “normal” level permission capabilities without
permission with an app installed on the device

 — Local temporary denial-of-service (can be resolved by booting
the device into Safe Mode and removing the problem application)

New vulnerabilities are discovered through a combination of internal efforts
by the Android Security Team and reports from external security researchers.
Google supports and encourages responsible disclosure of vulnerabilities
through the Android Security Vulnerability Rewards Program.

Android Security Rewards program
On June 16, 2015, Google expanded its existing Vulnerability Reward program
to encourage and reward researchers who find, fix, and prevent vulnerabilities
on Android. The Android Security Rewards program covers security
vulnerabilities discovered in the latest available Android versions for Nexus
phones and tablets currently available for sale in the Google Store in the United

Android Security 2015 Year in Review / Android Platform Security 30

http://developer.android.com/guide/topics/manifest/permission-element.html#plevel
http://developer.android.com/guide/topics/manifest/permission-element.html#plevel
https://www.google.com/about/appsecurity/reward-program/
https://www.google.com/about/appsecurity/android-rewards/

States. The program rewards reported vulnerabilities rated as Critical, High,
and Moderate. At our discretion, we may reward Low severity vulnerabilities as
well, per the rules of the program.

During 2015, we awarded $210,161 for vulnerabilities submitted to the
program. This total breaks down to 30 Critical, 34 High, 8 Moderate,
and 33 Low severity issues.

We would like to acknowledge 35 security
researchers and their colleagues for their
contributions to help improve Android Security.
Thank you.

Android platform monthly security updates program
The Android Security Team regularly provides security patches to manu-
facturers for Android 4.4.4 and higher so they can provide security updates
to their devices. 70.8% of all active Android devices are on a version that
we support with patches. We have provided these regular updates directly to
manufacturers since the release of these versions of Android. On August 5th,
2015, we expanded these releases to include a monthly public security update
program to the Android Open Source Project (AOSP), as well as a security
update lifecycle for Nexus devices. Since then, we’ve released monthly
security updates to AOSP and for Nexus devices, as have many of our partners
such as Samsung, LGE, and Blackberry.

In 2015, we first began to see device manufacturers publicly document their
commitment to provide security updates. For example, we will provide security
patches to Nexus devices for a minimum of 3 years from time of device launch
or 18 months from last sale on Google Play. Samsung and Blackberry have
also made statements about updates they provide for devices.

In total, in 2015 we released patches for 69 Critical, 54 High, 34 Moderate,
and 16 Low severity fixes. Of these, 7 Critical, 2 High, and 6 Moderate severity
fixes were released directly to partners in the January through July timeframe,
prior to the start of public bulletins. Although no public security bulletin was
provided prior to August 2015, all of the patches provided privately to partners
are available in AOSP.

Android Security 2015 Year in Review / Android Platform Security 31

http://source.android.com/security/overview/acknowledgements.html#2015
http://source.android.com/security/overview/acknowledgements.html#2015
http://officialandroid.blogspot.com/2015/08/an-update-to-nexus-devices.html
http://security.samsungmobile.com/introsm.html
http://blogs.blackberry.com/2015/11/managing-android-security-patching-for-priv/

Overall, we provided patches for 94 more vulnerabilities in 2015 than 2014.
As mentioned above, due to the significant changes to our severity ratings
for vulnerabilities, doing year-over-year comparisons on the severity of the
vulnerabilities is not possible. The largest factor that contributed to the rise
in the number of vulnerability patches in 2015 was the introduction of the
Android Security Rewards program, which encouraged researchers to take a
closer look at Android. Of the patches issued, 42% of the Critical, 22% of the
High, and 9% of the Moderate severity issues were found internally by Google.

The monthly public security patches are available in AOSP and details on the
fixes included in the patches are available in the corresponding Android security
bulletin for that month. As of this writing, all patches created in open source
code in 2015 are available in AOSP.

Android Security 2015 Year in Review / Android Platform Security 32

https://source.android.com/security/bulletin/index.html
https://source.android.com/security/bulletin/index.html

33

This section provides data on the overall state of the Android ecosystem in
2015 with details and trends for categories of Potentially Harmful Applications
(PHAs) and platform vulnerabilities.

At a high level, PHAs affected fewer than 1% of devices with GMS for nearly
all of 2015, and on average approximately 0.5% of devices had a PHA installed.
The rate of PHA install attempts in Google Play dropped, and there was an
increase in some categories of PHA install attempts. Noteworthy increases in
PHAs were quickly addressed. We also saw that devices that allow apps from
outside of Google Play are around 10 times more likely to have PHAs than
those that only install from Play.

Potentially Harmful Applications

The broadest statistic we track is the frequency with which PHAs are detected
during a full-device scan. We refer to this statistic as “device hygiene.” The
graph below shows the level of device hygiene starting where the Android
Security 2014 Year In Review left off, showing the trend through November and
December 2014 and continuing on through all of 2015.

As the graph illustrates, with the exception
of a two week period, over 99% of all Android
devices were free of known PHAs1.

Ecosystem Data

Android Security 2015 Year in ReviewAndroid Security 2015 Year in Review 33

1 Many of the graphs show an increase
in the number of PHAs downloaded and
installed in devices in the time period
between mid-August through mid-October.
This was caused by a family of PHAs
known as “Ghost Push”, which was
disrupted by the Android security team.
(See Ghost Push for more details)

Percentage of devices with PHA installed (except Rooting)

Note that the term “except Rooting” indicates that we have omitted non-
malicious rooting applications. We differentiate hostile rooting apps from
non-malicious ones based on two factors: the app identifies itself as a rooting
application and it gets explicit user consent to root the device. The basic shape
of the graph is similar when including non-malicious rooting to the overall
graph.

Taking a different view, we perform a related analysis of the percentage
of devices that have known PHAs installed. The yellow line indicates the
percentage of devices with one or more known PHAs that have only installed
apps from Google Play2. The blue line represents the percentage of PHAs found
on devices that have unknown sources enabled and have installed applications
from outside of Google Play. As with the previous graph, the data shown goes
back to November 2014 in order to show the trends since the last Android Year
In Review report.

Overall, the trend shows devices that allow
installing apps from outside Google Play are
around 10 times more likely to have PHAs than
those that only install from Play.

Android Security 2015 Year in Review / Ecosystem Data 34

0.6%

0.8%

1%

10/2014

12/2014

02/2015

04/2015

06/2015

08/2015

10/2015

12/2015

0.0%

0.2%

0.4%

2 For a period starting in February through
mid-April, an incorrectly applied update
caused Verify Apps to not show alerts for a
number of known PHAs. In the graph, this
period can clearly be seen by a flat spot on
the yellow Play Only line. The sharp upward
line in April resulted from correcting this
issue. We have done a full analysis on
what caused the problem and have made
changes to our procedures to ensure
this won’t happen again, and also our
monitoring system to ensure that we catch
issues like this quickly. Data outside this
timeframe better reflects normal trends.

Fraction of devices with PHA installed (Except Rooting)

Historical trends
Last year we reported on several classifications of Potentially Harmful
Applications. In this section, we compare the state of activity of these PHAs in
2015 to previous years.

The charts in this section show a different statistic than the previous data—
these describe the per-day fraction of all installs that were classified as PHAs.
It is a count of installation attempts, rather than a count of devices with an
installed application. Due to limitations of our data collection before 2015, this
is the only statistic we have available to track historical trends. Unfortunately,
we believe that it may overstate the prevalence of certain PHAs outside of
Google Play. For example, we frequently see repeated install attempts of the
same application onto a device, which increases the number of installation
attempts without actually increasing the number of installs. However, it’s the
best data that we have available now and we think it is useful for showing
overall trends.

Note that several categories were defined midway through 2014, which
prevents making a complete year-over-year comparison between 2014 and
2015 for those categories. For these areas, we present the partial 2014 data to
illustrate trends over time.

The chart below shows the trends since 2014 for top PHA categories we see in
Google Play. Overall, within Google Play we saw a reduction of over 40% in the
number of PHA installation attempts in 2015.

Android Security 2015 Year in Review / Ecosystem Data 35

10/30/2014

12/06/2014

01/11/2015

02/17/2015

03/25/2015

05/01/2015

06/06/2015

07/13/2015

0.00%

0.50%

1.00%

1.50%

2.00%

08/18/2015

12/06/2015

09/24/2015

10/30/2015

Outside of Play Play Only

Android Security 2015 Year in Review / Ecosystem Data 36

Year-Over-Year PHA Comparison —Google Play

The following graph shows the occurrence rates for user attempts to install a
PHA from a source outside of Google Play, broken down by category of the PHA.
Overall, outside of Google Play the worldwide rate of installation attempts of any
PHA increased in 2015 versus 2014.

Year-Over-Year PHA Comparison —Outside of Google Play

0.00%

0.10%

0.20%

Data
Collection

Spyware Trojan Hostile
Downloader

Phishing

2014 2015

Fr
ac

tio
n

of
 T

ot
al

 In
st

al
ls

Privelege
Escalation

SMS
Fraud

Backdoor Rooting WAP
Fraud

0.15%

0.08%

0.05%

0.02%
0.01%

0.02%
0.01%

0.02%
0.01%

0.00%

Data
Collection

Spyware Trojan Hostile
Downloader

Phishing

2014 2015

Fr
ac

tio
n

of
 T

ot
al

 In
st

al
ls

Privelege
Escalation

SMS
Fraud

Backdoor Rooting WAP
Fraud

0.06%

0.17%
0.15%

0.03%

0.29%

1.00%

2.60%

0.06% 0.06%
0.04%

0.02% 0.02%

0.12% 0.12%

0.29%

0.32%

0.01% 0.01% 0.01%0.01%

0.10%

0.20%

0.30%

Data Collection
In late 2014, we created the Data Collection category to track applications
that copy lists of package names off of devices. Previously, this behavior
was not considered to be a PHA, so there were initially a significant number
of applications that were classified as Data Collection, but that decreased
throughout the year.

Hostile Downloader and Trojan
The increase in Hostile Downloader in 2015 was almost entirely due to a single
family of PHAs known as Ghost Push, which is described in more detail in the
Noteworthy PHAs section. This family used a multistage process that installed
a hostile downloader app (an app that downloads other applications without
the user’s permission), then used this to download other applications, primarily
Trojans.

The following graph shows how nearly all installs of Hostile Downloader and
Trojans occurred in the third quarter. Once Ghost Push was identified, it was
promptly stopped and we began to remove these applications from users’
devices.

2015: Hostile Downloader and Trojan trends

Privilege Escalation
In late 2014, we introduced Privilege Escalation as a category, so the year-over-
year increase comes from having a full year’s worth of data in 2015, versus
having only a partial year in 2014. We classify apps as Privilege Escalation apps
if they disable Android security measures like SELinux, or abuse Android APIs in

Android Security 2015 Year in Review / Ecosystem Data 37

01/11/2015

02/17/2015

03/25/2015

05/01/2015

06/06/2015

07/13/2015

08/18/2015

09/24/2015

00.00%

07.50%

15.00%

22.50%

30.00%

10/30/2015

12/06/2015

Hostile Downloader Trojan

Android Security 2015 Year in Review / Ecosystem Data 38

ways that are harmful to users. The most common case we saw was abuse of
device administrator privileges to prevent users from uninstalling applications.
We changed Verify Apps to more effectively remove apps that abuse device
administrator privileges in mid-2015.

Spyware
Spyware is a category used to describe applications that attempt to take policy-
protected pieces of information from a device and send it off the device without
adequate consent from the user. Non-consensually collected information
can lead to possible privacy violations, surveillance, or reputational harm to
users. The number of installs of Spyware declined in 2015. A couple of factors
contributed to this decline.

First, the Google Play policy team began enforcing more restrictive policies on
advertising and tracking SDKs that collect information about users or devices.
Applications and developer SDKs that collect information are required to
comply with the Google Play disclosure and consent regulations if they want to
stay on Google Play. To comply with Google Play policy, many developers have
reduced user data collection, improved disclosure to the user about what they
are collecting, or both. As a result, these SDKs are now compliant with Google
Play policy and no longer classified as spyware.

The other contributing factor may be a specialization of previous spyware apps
that move them into other PHA categories. For example, we classify spyware
that focuses on monitoring the spouses and acquaintances of the PHA installer
as Commercial Spyware. Likewise we classify spyware that focuses on stealing
login credentials as Phishing applications, and spyware that allows for remote
access on devices as Backdoors. Spyware that simply collects a broad range of
sensitive information is becoming exceedingly rare.

2014–2015: Spyware trends, outside of Google Play

01/17/2014

03/16/2014

05/13/2014

07/10/2014

09/06/2014

11/02/2014

12/30/2014

02/26/2015

0.00%

0.25%

0.50%

0.75%

1.00%

04/25/2015

06/22/2015

08/19/2015

10/16/2015

12/13/2015

Android Security 2015 Year in Review / Ecosystem Data 39

The following graph shows a comparison between generic spyware and
what we term Commercial Spyware. Commercial Spyware is when a person
other than the device owner uses temporary access to the device to install
spyware. Our research suggests that this is likely someone who has a personal
relationship with the device owner, so we have also seen use of the phrase
“spouseware” for this category of application.

2015: Spyware and Commercial Spyware trends, outside of Google Play

SMS and WAP Fraud
In the early years of Android, SMS fraud was the most common type of abuse
that Android users were exposed to. It was a quick way to steal money from
users that granted applications the SEND_SMS permission. In 2014, we
introduced a new system dialog that warns users when apps want to send
premium SMS, and saw the decline of SMS fraud apps. This trend continues
throughout 2015. Now SMS fraud is very rare on Google Play and other app
sources in nearly all parts of the world, except for a few countries. Because
SMS-based payments are more common in these few remaining countries
(such as Vietnam) than in other countries, users are more likely to agree to app
requests to send premium SMS.

The introduction of runtime permissions in Android 6.0 added an additional
hurdle to SMS fraud. In addition to the premium SMS warning dialog, there is
now another dialog that asks users if they want to allow an app to send any
kind of SMS. At this point there are two runtime dialogs between an attempted
SMS fraud and a successful SMS fraud. We expect SMS fraud to decline
further in 2016.

02/17/2015

03/25/2015

05/01/2015

06/06/2015

07/13/2015

08/18/2015

09/24/2015

10/30/2015

0.00%

0.04%

0.08%

0.12%

0.16%

12/06/2015

Commercial SpywareSpyware

Android Security 2015 Year in Review / Ecosystem Data 40

The chart below clearly illustrates the decline in SMS fraud between 2014,
shown in blue, and 2015, shown in red.

2014–2015: SMS Fraud trends, outside of Google Play

As the graph below shows, worldwide around 12% of premium SMS requests
were blocked by the user. This number is consistent with what we saw in 2014.

2015: Percentage of blocked SMS requests

01/11/2015

02/17/2015

03/25/2015

05/01/2015

06/06/2015

07/13/2015

08/18/2015

09/24/2015

0.00%

4.00%

8.00%

12.00%

16.00%

10/30/2015

12/06/2015

Not Sent Fraction

01/17/2014

03/16/2014

05/13/2014

07/10/2014

09/06/2014

11/02/2014

12/30/2014

02/26/2015

0.00%

0.10%

0.20%

0.30%

0.40%

04/25/2015

06/22/2015

08/19/2015

10/16/2015

12/13/2015

Android Security 2015 Year in Review / Ecosystem Data 41

SafetyNet aggregates data that is anonymously collected about the applications
that are more likely to have requests to send premium SMS be rejected by a
user. This is used to identify PHAs, which are subsequently blocked by Verify
Apps, or removed from Google Play.

As SMS fraud declined in popularity, another kind of toll fraud first appeared.
WAP fraud is a method of abusing carrier billing services to make charges
to user phone bills without user consent. Only a few countries, most notably
Russia and Spain, have carriers that expose an easy way to make WAP charges
from Android apps.

The charts below show a comparison of WAP fraud between 2014 and 2015.
Note that the numbers tracking WAP fraud only began in October, 2014, so
only Q4 2014 is represented. Because the data is lacking for Q1–Q3 of 2014, it
is difficult to establish clear trends year over year, but there was a significant
decline in WAP Fraud in the second half of 2015.

2014–2015: WAP Fraud trends, outside of Google Play

Ransomware
Ransomware first came to Android around the beginning of 2014. Ransomware
applications take two dominant forms:

 — Applications that encrypt data on the device external storage (such as an
SD Card) and then demand payment to decrypt the data.

 — Applications that prevent normal functioning of the device and then demand
payment to regain access to the device.

01/17/2014

3/16/2014

05/13/2014

07/10/2014

09/06/2014

11/02/2014

12/30/2014

02/26/2015

0.00%

0.06%

0.12%

0.18%

0.24%

04/25/2015

06/22/2015

08/19/2015

10/16/2015

12/13/2015

Android Security 2015 Year in Review / Ecosystem Data 42

At this time, ransomware remains a PHA category that is almost exclusively
distributed outside Google Play. The most common distribution schemes
involve tricking users into installing apps they believe are legitimate offerings.
Often these are pornography apps, fake Flash player apps, or fake media
player apps. A lot of ransomware also target Russian-speaking users with
instructions for payment only given in Russian or using common Russian
online payment methods. However, some ransomware families have localized
their code to target users in other parts of the world.

Verify Apps began tracking incidents of Ransomware in mid-June 2014. Overall,
Ransomware installs are less than .01% of all installs.

2014–2015: Ransomware trends, outside of Google Play

05/13/2014

07/10/2014

09/06/2014

11/02/2014

12/30/2014

02/26/2015

04/25/2015

06/25/2015

0.00%

0.01%

0.02%

0.03%

0.04%

08/19/2015

10/16/2015

12/13/2015

The following section includes data that was collected with Verify Apps and
SafetyNet about particular security events that were prominent in 2015.

Ghost Push

Ghost Push is a family of PHA we have been monitoring since October 2014.
This type of PHA is a hostile downloader that once installed attempts to
download other PHAs to the device. In the summer of 2015, we saw a sudden
large spike in the number of variants being deployed, which contributed to a
significant overall rise in install attempts of this particular PHA family.

The shaded red portion of the graph below clearly illustrates the impact of this
family. For roughly seven weeks, Ghost Push installation attempts contributed
up to 30% of all installation attempts worldwide. In total, we found more than
40,000 apps that we categorized into this family and we logged more than 3.5
billion installation attempts for these apps.

2015: PHA installs—Percentage of users warned vs. not warned, outside
of Google Play

Noteworthy PHAs
and Vulnerabilities

Android Security 2015 Year in Review 43

02/26/2015 04/25/2015 06/22/2015 08/19/2015 10/16/2015

00.00%

07.50%

15.00%

22.50%

30.00%

12/13/2015

Warned Installs as a Fraction of PingsNot Warned Installs as a Fraction of Pings

Android Security 2015 Year in Review / Noteworthy PHAs and Vulnerabilities 44

Due to the significant rate of attempted installations, we investigated the source
of the installations. We discovered that many Ghost Push installation attempts
pass through a company that provides OTA update infrastructure and OTA
updates as a service for Android device manufacturers and carriers primarily
in the Southeast Asia region. In addition to their core services around OTA
updates, this company also provides an app installation service. Application
developers and advertisers can pay the OTA company to remotely install
applications on devices. This company installed Ghost Push onto many devices.
We were able to determine that the large number of installation attempts we
saw were caused by the OTA company continuously trying to install Ghost
Push applications on user devices. In some instances, bugs in the application
installation software caused the OTA company to try to install the same
application hundreds of times onto a single device—with all but one installation
attempt failing. We are working with the OTA company to develop a better
security process to scan the applications they send out to devices.

Although we observed billions of installation attempts the number of affected
devices was far lower than the number of installation attempts. We estimate
the maximum number of affected devices to be around four million. As a result
of our cleanup efforts and collaboration with other partners, the number of
affected devices was quickly reduced, and has been reduced by over 90%.

The following graph shows the occurrence of Ghost Push install attempts
across the top ten countries. We saw biggest impact in India and Indonesia.
We attribute this to the prevalence of devices in those regions getting updates
from the previously mentioned OTA company.

2015: PHA installation attempts by country

AE IDCN GB IR JP KR RU US

01/11/2015

02/17/2015

03/25/2015

05/01/2015

06/06/2015

07/13/2015

08/18/2015

09/24/2015

0%

15%

30%

45%

60%

10/30/2015

12/06/2015

Android Security 2015 Year in Review / Noteworthy PHAs and Vulnerabilities 45

Russian banking fraud

In 2015, we focused on a family of phishing applications that targeted Russian
users, specifically customers of a large Russian bank. Once installed, the
applications of this family lay dormant in the background waiting for two-
factor login tokens sent through SMS to user phones. We estimate the number
of affected devices to have been under 100,000 at the beginning of our
investigation.

In the following weeks and months, we teamed up with security engineers
at the bank to identify samples from this family and remove them from
users’ phones. This investigation gave us the first opportunity to work with
an external partner to clean up PHAs from user devices. It also allowed us
to closely monitor multiple components of our user protections in one end-
to-end run from application scanning in the backend to device cleanup with
Verify Apps. We used a two-phased approach to target removal of this family:
in the first phase, we increased the frequency of scans. In the second phase,
we changed the behavior of Verify Apps to remove the applications and then
notify the user of the device (the default behavior is to warn the user and allow
them to determine whether to remove the application.) These two changes
were very effective; after 11 weeks of focusing on this family, the number of
affected devices had dropped by 80%. This decline occurred despite ongoing
promotion and distribution of these PHAs on many different websites.

The following graph shows the percentage of Russian language devices that
had a PHA installed, and also overlays the two phases of our targeted removal
operation. In phase 1, we increased the rate of security scans. In phase 2, we
maintained the elevated rate of security scans and automatically removed
known PHAs in this family.

2015: Percentage of Russian devices with PHA installed

7.50%

10.00%

0.00%

2.50%

5.00%

Phase 1 Phase 2

04/2015 07/201501/2015

Android Security 2015 Year in Review / Noteworthy PHAs and Vulnerabilities 46

Remote vulnerabilities (Stagefright)

In 2015, we did not observe (nor did we receive reports of) any significant or
widespread exploitation of remote vulnerabilities on Android devices. We did
observe multiple instances of attempted exploitations of earlier remote code
execution vulnerabilities affecting WebView (CVE 2012-2871). These issues
were patched in 2012, but exploit code included in tools produced by the
company Hacking Team became public following the unauthorized release
of a large number of Hacking Team internal documents in July 2015. We
believe that these exploit attempts may be successful against devices running
unpatched versions of Android 4.1 and earlier.

There were several new remote code execution vulnerabilities identified in
2015, the most prominent of which were the Stagefright vulnerabilities. In
late 2015, device-specific exploitation demonstration code was produced
and released by the security company Zimperium. Since then we have seen
a number of successful exploit proof-of-concepts demonstrated by security
researchers, including Google’s own Project Zero. We have also received
several reports that exploits for Stagefright are included in exploit toolkits.
As of this writing, we have not observed, nor are we aware of, any successful
attempts to exploit the Stagefright vulnerabilities against actual user devices.
We continue to monitor multiple channels for signs of widespread or targeted
exploitation against user devices.

Rooting vulnerabilities

We monitor rooting vulnerabilities closely, due to their high level of potential
harm if they are used maliciously. The most noteworthy non-malicious rooting
application was PingPong Root, which uses a vulnerability to permanently root
the device.

Note that per Google Play’s policy, all rooting apps are not allowed as they
compromise the device’s security. SafetyNet Attest now provides an API to
detect if a device is rooted.

Application vulnerabilities

At PacSec 2015, Qihoo 360 researcher Guang Gong demonstrated a
vulnerability that allowed an attacker using Chrome on Android to visit an
attacker-controlled website to download and install an arbitrary application
on an Android device. We have made changes in Chrome and Google Play in

Android Security 2015 Year in
Review / Noteworthy PHAs and

Vulnerabilities 46

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2871

Android Security 2015 Year in Review / Noteworthy PHAs and Vulnerabilities 47

response to this issue, and we have not seen widespread exploitation of
this issue.

At Black Hat in Las Vegas, Check Point Software revealed an exploit against
the authentication methodology used by several third-party mobile Remote
Support Tools (mRSTs). mRSTs are not a part of the core Android OS, and
are not provided by Google. This vulnerability was named Certifigate. The
vulnerability occurs with apps improperly validating the serial number on
certificates, which was used to grant remote access to the device. mRSTs
are frequently pre-installed on devices by manufacturers and others as a way
to take remote control of a device to provide support for issues. Once we
were alerted to the potential unauthorized use of this feature, we removed
the apps from Google Play. We also added checks in Verify Apps to prevent
potential exploitation by applications outside of Google Play. We have seen no
exploitation of this vulnerability to date.

Android Security 2015 Year in Review 48

Below is a list of links referenced in this report. These web sites provide more detailed
information about the topics covered than is possible in this report.

Android 6.0 changes
http://developer.android.com/about/versions/marshmallow/android-6.0-changes.html

Android Compatibility Definition Document
http://source.android.com/compatibility/android-cdd.pdf

Android Compatibility Test Suite
http://source.android.com/compatibility/cts/index.html

Android Security Rewards program
https://www.google.com/about/appsecurity/android-rewards/

Checking device compatibility with SafetyNet
http://developer.android.com/training/safetynet/index.html

Chrome Safe Browsing on Android
https://googleonlinesecurity.blogspot.com/2015/12/protecting-hundreds-of-millions-more.html

Full disk encryption information
https://source.android.com/security/encryption/index.html

Google Vulnerability Reward program
https://www.google.com/about/appsecurity/reward-program/

How We Keep Harmful Apps Out Of Google Play and Protect Your Android Device paper
https://www.source.android.com/security/reports/Android_WhitePaper_Final_02092016.pdf

Nexus security bulletins
https://source.android.com/security/bulletin/index.html

Verified Boot information
https://source.android.com/security/verifiedboot/index.html

Appendix

Android Security 2015 Year in Review 48

http://developer.android.com/about/versions/marshmallow/android-6.0-changes.html
http://source.android.com/compatibility/android-cdd.pdf
http://source.android.com/compatibility/cts/index.html
https://www.google.com/about/appsecurity/android-rewards/
http://developer.android.com/training/safetynet/index.html
https://googleonlinesecurity.blogspot.com/2015/12/protecting-hundreds-of-millions-more.html
https://source.android.com/security/encryption/index.html
https://www.google.com/about/appsecurity/reward-program/
https://www.source.android.com/security/reports/Android_WhitePaper_Final_02092016.pdf
https://source.android.com/security/bulletin/index.html
https://source.android.com/security/verifiedboot/index.html

Android Security 2015 Year in Review

